Integral structures in extended affine Lie algebras
نویسندگان
چکیده
We construct certain integral structures for the cores of reduced tame extended affine Lie algebras rank at least 2. One main tools to achieve this is a generalization Chevalley automorphisms in context algebras. As an application, groups type associated adjoint representation are defined over arbitrary fields.
منابع مشابه
Realization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملAffine structures on nilpotent contact Lie algebras
Any Lie algebra equipped with a symplectic form can be equipped with an affine structure. On the other hand there exist (2p + 1)-dimensional Lie algebras with contact form and no affine structure. But each nilpotent contact Lie algebra is a one-dimensional central extension of a symplectic algebra. The aim of this work is to study how we can extend, under certain conditions, the symplectic stuc...
متن کاملTensor Structures Arising from Affine Lie Algebras
This paper is a part of the series [KL]; however, it can be read independently of the first two parts. In [D3], Drinfeld proved the existence of an equivalence between a tensor category of representations of a quantum group over C[[ ro]] and a tensor category of representations of an undeformed enveloping algebra over C[[ro]] , in which the associativity constraints are given by the Knizhnik-Za...
متن کاملAffine structures on filiform Lie algebras
The aim of this note is to prove that every non characteristically nilpotent filiform algebra is provided with an affine structure. We generalize this result to the class of nilptent algebras whose derived algebra admits non singular derivation.
متن کاملExtended affine Lie algebras and other generalizations of affine Lie algebras – a survey
Motivation. The theory of affine (Kac-Moody) Lie algebras has been a tremendous success story. Not only has one been able to generalize essentially all of the well-developed theory of finite-dimensional simple Lie algebras and their associated groups to the setting of affine Lie algebras, but these algebras have found many striking applications in other parts of mathematics. It is natural to as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.01.007